2024-08-01 张洛萱 风俗小资讯
''
马路边房子的风水问题:
噪音污染:
临近繁忙马路会导致交通噪音,影响居住者的睡眠和健康。
空气污染:
汽车尾气和灰尘污染会通过窗户和阳台进入室内,损害居住者的呼吸* 。
光污染:
街道照明和车灯会产生光污染,干扰睡眠并影响情绪。
煞气:
风水认为,直冲住宅的道路会形成煞气,对居住者不利。
马路上的汽车和行人高速行驶,会产生煞气,影响健康和运势。
安全隐患:
马路边的房子往往靠近交通要道,容易发生交通事故,对居住者的安全构成威胁。
其他问题:
隐私泄露:临近马路会导致隐私泄露,因为行人和车辆都可以看到室内的情况。
采光不足:高大的建筑物和树木可能会遮挡马路边房子的采光。
物业费高:临近马路边的房子通常会面临较高的物业费,因为需要更多的维护和清洁。
化解措施:
安装隔音窗:可以有效阻挡交通噪音。
使用空气净化器:可以过滤室内空气,减少空气污染。
种植绿植:可以在窗户和阳台上种植绿植,吸收噪音和空气污染物。
设置风水化煞物件:如八卦镜、麒麟等,可以化解煞气。
选择安全区域:购买马路边房子时,应优先考虑远离交通要道的区域。
保持隐私:可以使用窗帘或百叶窗保护隐私。
提高采光:使用反光材料或镜子反射光线,增加室内采光。
from itertools import product
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import random
class TrafficLight:
def __init__(self, id, location: Tuple[int, int]):
self.id = id
self.location = location
self.cycle_time = 0
def set_cycle_time(self, cycle_time):
self.cycle_time = cycle_time
class Intersection:
def __init__(self, id, location: Tuple[int, int]):
self.id = id
self.location = location
self.traffic_lights = []
self.incoming_roads = []
self.outgoing_roads = []
self.phase_sequence = []
self.c* rent_phase = 0
def add_traffic_light(self, traffic_light):
self.traffic_lights.append(traffic_light)
def add_incoming_road(self, road):
self.incoming_roads.append(road)
def add_outgoing_road(self, road):
self.outgoing_roads.append(road)
def set_phase_sequence(self, phase_sequence):
self.phase_sequence = phase_sequence
def get_c* rent_phase(self):
ret* n self.phase_sequence[self.c* rent_phase]
def advance_phase(self):
self.c* rent_phase = (self.c* rent_phase + 1) % len(self.phase_sequence)
class Road:
def __init__(self, id, start, end):
self.id = id
self.start = start
self.end = end
self.length = np.linalg.norm(np.array(start) np.array(end))
self.num_lanes = 1
self.speed_limit = 50
def set_num_lanes(self, num_lanes):
self.num_lanes = num_lanes
def set_speed_limit(self, speed_limit):
self.speed_limit = speed_limit
class Vehicle:
def __init__(self, id, road, start_time):
self.id = id
self.road = road
self.start_time = start_time
self.c* rent_position = road.start
self.target_position = road.end
self.speed = road.speed_limit
def update_position(self, time):
distance_traveled = self.speed (time self.start_time)
if distance_traveled >= self.road.length:
self.c* rent_position = self.road.end
else:
self.c* rent_position = self.road.start + distance_traveled (self.road.end self.road.start) / self.road.length
class Simulation:
def __init__(self):
self.intersections = []
self.roads = []
self.vehicles = []
self.total_time = 0
def add_intersections(self, intersections: List[Intersection]):
self.intersections.extend(intersections)
def add_roads(self, roads: List[Road]):
self.roads.extend(roads)
def add_vehicles(self, vehicles: List[Vehicle]):
self.vehicles.extend(vehicles)
def run(self, time):
for intersection in self.intersections:
for traffic_light in intersection.traffic_lights:
traffic_light.cycle_time = 60 / len(intersection.phase_sequence)
while self.total_time < time:
self.total_time += 1
for vehicle in self.vehicles:
vehicle.update_position(self.total_time)
for intersection in self.intersections:
intersection.advance_phase()
def get_average_travel_time(self):
total_travel_time = 0
for vehicle in self.vehicles:
total_travel_time += vehicle.start_time self.total_time
ret* n total_travel_time / len(self.vehicles)
class City:
def __init__(self):
self.intersections = []
self.roads = []
def add_intersections(self, intersections: List[Intersection]):
self.intersections.extend(intersections)
def add_roads(self, roads: List[Road]):
self.roads.extend(roads)
Create a city
city = City()
Add intersections
intersection1 = Intersection(1, (0, 0))
intersection2 = Intersection(2, (1000, 0))
intersection3 = Intersection(3, (0, 1000))
intersection4 = Intersection(4, (1000, 1000))
city.add_intersections([intersection1, intersection2, intersection3, intersection4])
Add roads
road1 = Road(1, (0, 0), (1000, 0))
road2 = Road(2, (1000, 0), (1000, 1000))
road3 = Road(3, (0, 1000), (1000, 1000))
road4 = Road(4, (0, 0), (0, 1000))
city.add_roads([road1, road2, road3, road4])
Connect intersections with roads
intersection1.add_outgoing_road(road1)
intersection1.add_incoming_road(road4)
intersection1.add_outgoing_road(road2)
intersection2.add_incoming_road(road1)
intersection2.add_outgoing_road(road3)
intersection3.add_incoming_road(road4)
intersection3.add_outgoing_road(road2)
intersection4.add_incoming_road(road2)
intersection4.add_incoming_road(road3)
Set intersection phase sequences
intersection1.set_phase_sequence([0, 1, 2, 3])
intersection2.set_phase_sequence([0, 1, 2, 3])
intersection3.set_phase_sequence([0, 1, 2, 3])
intersection4.set_phase_sequence([0, 1, 2, 3])
Create a simulation
simulation = Simulation()
Add intersections and roads to the simulation
simulation.add_intersections(city.intersections)
simulation.add_roads(city.roads)
Create vehicles and add them to the simulation
for i in range(1000):
start_time = random.uniform(0, 1000)
road = random.choice(city.roads)
vehicle = Vehicle(i, road, start_time)
simulation.add_vehicles([vehicle])
Run the simulation for 1000 seconds
simulation.run(1000)
Print the average travel time
print(simulation.get_average_travel_time(), "seconds")
def main():
Create a city
city = City()
Add intersections
intersection1 = Intersection(1, (0, 0))
intersection2 = Intersection(2, (1000, 0))
intersection3 = Intersection(3, (0, 1000))
intersection4 = Intersection(4, (1000, 1000))
city.add_intersections([intersection1, intersection2, intersection3, intersection4])
Add roads
road1 = Road(1, (0, 0), (1000, 0))
road2 = Road(2, (1000, 0), (1000, 1000))
road3 = Road(3, (0, 1000), (1000, 1000))
road4 = Road(4, (0, 0), (0, 1000))
city.add_roads([road1, road2, road3, road4])
Connect intersections with roads
intersection1.add_outgoing_road(road1)
intersection1.add_incoming_road(road4)
intersection1.add_outgoing_road(road2)
intersection2.add_incoming_road(road1)
intersection2.add_outgoing_road(road3)
intersection3.add_incoming_road(road4)
intersection3.add_outgoing_road(road2)
intersection4.add_incoming_road(road2)
intersection4.add_incoming_road(road3)
Set intersection phase
不一定。
马路边的房子可能有以下优点:
便捷性:靠近主要道路,出行方便。
商业机会:位于商业街或繁华地段,便于开设商店或租给商业用途。
视野开阔:通常视野不受阻挡,采光较好。
但马路边的房子也存在以下缺点:
噪音和空气污染:临近道路,会受到车辆噪音和尾气污染的影响。
隐私差:由于临近道路,容易受到行人或车辆的窥视。
安全问题:临近道路,可能会增加车辆碰撞或其他安全隐患的风险。
因此,马路边的房子是否便宜需要具体情况具体分析。如果以上缺点对于你来说是不可接受的,那么马路边的房子可能比远离道路的房子更贵。但如果便捷性或商业机会对你很重要,那么马路边的房子可能仍然是经济实惠的选择。
以下因素也会影响马路边房子的* :
地段:繁华地段的房子比偏远地段的房子贵。
社区环境:治安良好、环境优美的社区的房子更贵。
房屋本身的状况:新房或经过翻新的房子比旧房贵。
供需关系:供不应求时,房子* 会上涨。